Number Theory (2025-26)

Teachers: Qing Liu and Denis Benois

Program:

  • Dedekind domains and valuations, extensions.
  • Valued fields. Completion and Hensel’s lemma.
  • Ramification theory. Unramified extensions, totally ramified extensions. Tame and wild ramification.
  • Galois Theory, ramification subgroups.
  • Some applications in algebraic geometry.

Prerequisites:

  •  Theory of Galois extensions of fields;
  • Basic notion of commutative algebra  (modules, localization).

Bibliography:

F. Lorenz: Algebra II, Universitext (2008), Springer
J. Neukirch: Algebraic number theory, GMW 322 (1999), Springer
J.-P. Serre: Local fields, GTM 67 (1979), Springer