Geometry

Teachers: Laurent Bessières and Pierre Mounoud

Program:

  • Reminder of differential geometry: differential manifolds, tangent bundle, vector fields
  • Riemannian metrics: connexions, parallel transport
  • Geodesics: local existence and uniqueness, Gauss Lemma, completeness
  • Curvatures: Riemann curvatures, Ricci curvature, scalar curvature
  • Variational calculus and applications: variation formula for arclenght and energy, Jacobi fields
  • Introduction to hyperbolic geometry

Prerequisites:

Differential Geometry.

References:

  • J. Cheeger, D. Ebin: Comparison theorems in Riemann Geometry (1975)
  • M. Do Carmo: Riemannian Geometry (1992)
  • S.Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry (1993)